
Les vecteurs 

I.  Translation de vecteur A⃗B
a) Définitions

Définition : TRANSLATION         

A et B désignent deux points du plan 

La translation qui transforme A en B associe à tout point M du plan , l'unique point M' tel que ABM'M 

soit un parallélogramme.  Cette translation est appelée la translation de vecteur AB  notée  tAB

1er cas : M ∉ (AB) 2ème cas :  M ∈ (AB) 

Vocabulaire     :   

• Le point M' est appelé l'image de M par t A⃗B

• On dit aussi que M' est le translaté de M

Remarques

• Une symétrie centrale est une transformation 

associée à un demi-tour

• Une symétrie axiale peut être associée à un 

effet miroir

• Une translation modélise un glissement 

rectiligne.

Pour la définir, on indique la direction, le 

sens et la longueur du mouvement d'où la 

définition suivante :

Définition d'un vecteur    Soit A et B deux points du plan

Le vecteur A⃗B  se définit par :                                                                             B

• une direction :  celle de la droite (AB) 

• un sens : celui de A vers B                                                 A

• une longueur ou norme : celle du segment [AB] notée ∣∣⃗AB∣∣           

On dit alors que A est l'origine du vecteur A⃗B  et B son extrémité

    Remarque : Lorsque les points A et B sont confondus, le vecteur A⃗B  est le vecteur nul. On le note 0  .
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b)  Vecteurs égaux

Définition : Dire que deux vecteurs AB  et CD  sont égaux signifie qu'ils ont :

• la même direction : (AB) // (CD) 

• le même sens : le sens de A vers B est le même que celui de C vers D 

• la même longueur : AB = CD 

 

Propriété : Deux vecteurs AB  et CD   sont égaux si et seulement si le quadrilatère ABDC est un    

           parallélogramme , éventuellement aplati. 

                                            A⃗B=C⃗D      ABDC est un parallélogramme ⇔

Représentants d'un vecteur 

Sur la figure ci-contre, On a construit deux vecteurs

égaux AB  et C⃗D  mais on peut en tracer d'autre. 

Tous les « segments munis une flèche » représentent  le

même vecteur A⃗B  . On décide alors de noter ce même

vecteur à l'aide d'une seule lettre u⃗ . 

Les vecteurs A⃗B  et C⃗D  sont alors des représentants du

vecteurs u⃗

II.  Sommes de vecteurs

a) Relation de Chasles  

Propriété :  

Effectuer une translation de vecteur AB  suivie d'une translation de 

vecteur BC  revient à effectuer une translation de vecteur AC  ce qui 

se note : 

                          AB  + BC  = AC   .      

Cette relation s'appelle la relation de Chasles 

• Cette opération très simple permet de décomposer un vecteur en deux vecteurs plus intéressants . La 

seule contrainte  est de faire correspondre l'origine du deuxième vecteur avec l'extrémité du premier 

• La relation de Chasles permet d’écrire : AB  + BA  = AA   . Or AA  =         donc AB  + BA  =  

d’où AB  =              .   On dira que les vecteurs AB   et BA   sont       

     De manière générale,  – u   désigne l’opposé de u

         Construire l'opposé de u  sur la figure ci-contre
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b)  Règle du parallélogramme

la règle du parallélogramme :     Soit ABDC un parallélogramme.  On a l'égalité :   AB  + AC  = AD    

Démonstration     :   Soit ABDC un parallélogramme. 

On a donc A⃗C=B⃗D  d'où : A⃗B+ A⃗C=A⃗B+ B⃗D
La relation de Chasles permet alors d'écrire  que 

A⃗B+ A⃗C=A⃗D

c)   Addition de deux vecteurs

Soient u  et v  deux vecteurs quelconques du plan.  

On cherche à  construire le vecteur somme u  + v  .

Pour cela , soit A,B,C et D quatre points du plan tels 

que AB  = u  et  CD  = v  .   

Construire le vecteur somme u  + v   revient donc à

construire               

On construit alors le point E tel que BE  = CD

On a alors :   AB  + CD  = AB  +         =  

          D’où  u  + v  = 

d) Soustraction de deux vecteurs   

Soient u  et v  deux vecteurs. 

Soustraire le vecteur v  au vecteur u  , c’est 

additionner son opposé  – v  à u  : 

  u  – v  = u  + (– v )         

 

Ainsi, soustraire deux vecteurs revient à une addition

III- Multiplication d'un vecteur par un scalaire 

Le mot scalaire est utilisé en math pour désigner un nombre réel

 a) Définition

Définition :   Soit u⃗  un vecteur et k un réel

On définit le produit k u⃗  du scalaire k par le vecteur u⃗  par : 

• si k est positif, u⃗  et  k u⃗  ont même direction, 

même sens  et    ∣∣k u⃗∣∣  = k ∣∣⃗u∣∣

• si k est négatif, u⃗  et k u⃗  ont même direction, 

sont de sens contraires et  ∣∣k u⃗∣∣  = –k ∣∣⃗u∣∣
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b)  Quelques propriétés

Propriété     :   La multiplication d'un vecteur par un scalaire est dite bilinéaire ce qui veut dire que : 
• k ( u⃗  + v⃗  ) = k u⃗  + k v⃗
• ( k + k' ) u⃗  =  k u⃗  + k' u⃗

 Ces deux égalités permettent de travailler avec les vecteurs (presque) comme on travaille avec des nombres 

3u⃗+ 4u⃗  = 7u⃗−4(u⃗−v⃗ )  = 

c) Colinéarité de vecteurs

Définition : Dire que deux vecteurs u  et v  sont colinéaires signifie qu’il existe un réel k tel que u  = k v  

Remarque     :   

• Le vecteur 0  est colinéaire à tout vecteur u  car 0  = 0 u  
                   

• Le trapèze ABDC ci-contre est tel que AB = 5 et CD = 2

Le vecteur CD  n'est pas un représentant du vecteur AB  car

les longueurs AB et CD ne sont pas égales .

On peut cependant écrire la relation vectorielle suivante : 

CD  = 
2
5

 AB

Théorème 1: Points alignés

Trois points A , B et C sont alignés si et seulement si les

vecteurs AB  et AC  sont colinéaires : 

A , B , C alignés  ⇔    AC  = k AB

Théorème 2 : Droites parallèles

Deux droites (AB) et (MN) sont parallèles si et seulement si

les vecteurs AB  et MN  sont colinéaires : 

(AB)  // (MN) ⇔  AB   = k MN

 
Ces deux théorèmes sont importants car ils permettent de démontrer assez facilement que des points sont 

alignés ou que des droites sont parallèles. Vous les retrouverez régulièrement jusqu'en terminale 
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