Les vecteurs

L. Translation de vecteur AB

a) Définitions

Définition : TRANSLATION

A et B désignent deux points du plan

La translation qui transforme A en B associe a tout point M du plan , I'unique point M' tel que ABM'M
soit un parallélogramme. Cette translation est appelée la translation de vecteur AB notée ts

ler cas : M & (AB) 2éme cas : M € (AB)

Vocabulaire :
* Le point M' est appelé I'image de M par @z
*  On dit aussi que M' est le translaté de M

Remarques

o]
@

*  Une symétrie centrale est une transformation —

||j %

associée A un demi-tour ! :

*  Une symétrie axiale peut étre associée a un !

effet miroir

*  Une translation modélise un glissement
rectiligne. T
Pour la définir, on indique la direction, le A 7 ~

sens et la longueur du mouvement d'ou la

définition suivante :

Définition d'un vecteur Soit A et B deux points du plan

Le vecteur AB se définit par : v
* une direction : celle de la droite (AB) g

* un sens : celui de A vers B

*  une longueur ou norme : celle du segment [AB] notée |AB||

On dit alors que A est I'origine du vecteur AB et B son extrémité

Remarque : Lorsque les points A et B sont confondus, le vecteur AR est le vecteur nul. On le note () .
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b) Vecteurs égaux

Définition : Dire que deux vecteurs AB et CD sont égaux signifie qu'ils ont
* la méme direction : (AB) // (CD)
* le méme sens : le sens de A vers B est le méme que celui de C vers D

* la méme longueur : AB =CD

Propriété : Deux vecteurs AB et CD sont égaux si et seulement si le quadrilatére ABDC est un

parallélogramme , éventuellement aplati.

AB=CD ¢ ABDC est un parallélogramme

Représentants d'un vecteur

Droite support du vecteur
direction du vecteur

B
- /
vecteur a l'aide d'une seule lettre T . Représentation

du vecteur ii
Les vecteurs AB et CD sont alors des représentants du / /

vecteurs U

Sur la figure ci-contre, On a construit deux vecteurs

égaux AB et CD mais on peut en tracer d'autre.

Tous les « segments munis une fléche » représentent le

méme vecteur AB . On décide alors de noter ce méme

II. Sommes de vecteurs
a) Relation de Chasles

Propriété :
Effectuer une translation de vecteur AB suivie d'une translation de
vecteur BC revient a effectuer une translation de vecteur AC ce qui
se note

AB + BC = AC

Cette relation s'appelle la relation de Chasles

*  Cette opération trés simple permet de décomposer un vecteur en deux vecteurs plus intéressants . La

seule contrainte est de faire correspondre 'origine du deuxieme vecteur avec l'extrémité du premier

* La relation de Chasles permet d’écrire : AB + BA = AA -Or AA = donc AB + BA =
d’ou AB = . On dira que les vecteurs AB et BA sont
De maniére générale, - i désigne 'opposé de i el
/"/-;--’
— 0

Construire l'opposé de {i sur la figure ci-contre
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b) Régle du parallélogramme

la régle du parallélogramme :  Soit ABDC un parallélogramme. On a l'égalitt: AB + AC = AD

Démonstration : Soit ABDC un parallélogramme.
On adonc AC=BD d'ou : AB+ AC=AB+ BD
La relation de Chasles permet alors d'écrire que

AB+ AC=AD

¢) Addition de deux vecteurs

Soient {i et ¥ deux vecteurs quelconques du plan.
On cherche 2 construire le vecteur somme 4§ + Vv .
Pour cela , soit A,B,C et D quatre points du plan tels
que AB=det CD=7V.

=}

Construire le vecteur somme 3§ + Vv revient donc a
construire

On construit alors le point E tel que BE = CD

Onaalors: AB + CD = AB + =

=l

Dou 4+ Vv =

d) Soustraction de deux vecteurs

Soient {j et Vv deux vecteurs.

- -

Soustraire le vecteur v au vecteur {j , c’est

additionner son opposé -V a i :

=}

- _ - -

i-v=14+(-v)

Ainsi, soustraire deux vecteurs revient a une addition

ITI- Multiplication d'un vecteur par un scalaire

Le mot scalaire est utilisé en math pour désigner un nombre réel

a) Définition

Définition : Soit U un vecteur et k un réel

On définit le produit k T du scalaire k par le vecteur U par :
* sikestpositif, I et kI ont méme direction,
méme sens et |kU| =k ||d|

* sikest négatif, U et k7 ont méme direction,

sont de sens contraires et |kT| =-k [T
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b) Quelques propriétés

e k(om+v)=ku+kv
s (ktk)o=kuo-+ku

Propriété : La multiplication d'un vecteur par un scalaire est dite bilinéaire ce qui veut dire que :

Ces deux égalités permettent de travailler avec les vecteurs (presque) comme on travaille avec des nombres

30+ 40

- 70-4(u-v) =

¢) Colinéarité de vecteurs

Définition : Dire que deux vecteurs i et V sont colinéaires signifie qu’il existe un réel k tel que § =k ¥

Remarque_:

-

Le vecteur () est colinéaire a tout vecteur {j car () =0 {

Le trapéze ABDC ci-contre est tel que AB =5 et CD =2
Le vecteur CD n'est pas un représentant du vecteur AB car

les longueurs AB et CD ne sont pas égales .
On peut cependant écrire la relation vectorielle suivante :

— 2

CD=5AB

Trois points A , B et C sont alignés si et seulement si les

Théoréme 1: Points alignés

vecteurs AB et AC sont colinéaires

A,B,Calignés « AC =k AB

Deux droites (AB) et (MN) sont paralléles si et seulement si

les vecteurs AB et MN sont colinéaires

Théoréme 2 : Droites paralléles

(AB) //(MN) & AB =k MN

Ces deux théoremes sont importants car ils permettent de démontrer assez facilement que des points sont

alignés ou que des droites sont paralléles. Vous les retrouverez réguliérement jusqu'en terminale
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